skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lee, Seunghun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Acoustically driven ferromagnetic resonance (ADFMR) is a platform that enables efficient generation and detection of spin waves via magnetoelastic coupling with surface acoustic waves (SAWs). While previous studies successfully achieved ADFMR in ferromagnetic metals, there are only few reports on ADFMR in magnetic insulators such as yttrium iron garnet (Y3Fe5O12, YIG) despite more favorable spin wave properties, including low damping and long coherence length. The growth of high-quality YIG films for ADFMR devices is a major challenge due to poor lattice-matching and thermal degradation of the piezoelectric substrates during film crystallization. In this work, we demonstrate ADFMR of YIG thin films on LiNbO3 (LNO) substrates. We employed a SiOx buffer layer and rapid thermal annealing for crystallization of YIG films with minimal thermal degradation of LNO substrates. Optimized ADFMR device designs and time-gating measurements were used to enhance the ADFMR signal and overcome the intrinsically low magnetoelastic coupling of YIG. YIG films have a polycrystalline structure with an in-plane easy direction due to biaxial stresses induced during cooling after crystallization. The YIG device shows clear ADFMR patterns with maximum absorption for H ≈ 160 mT parallel to SAW propagation, which is consistent with our simulation results based on existing theoretical models. These results expand possibilities for developing efficient spin wave devices with magnetic insulators. 
    more » « less
  2. Abstract Nonlinear microscopy provides excellent depth penetration and axial sectioning for 3D imaging, yet widespread adoption is limited by reliance on expensive ultrafast pulsed lasers. This work circumvents such limitations by employing rare‐earth doped upconverting nanoparticles (UCNPs), specifically Yb3+/Tm3+co‐doped NaYF4nanocrystals, which exhibit strong multimodal nonlinear optical responses under continuous‐wave (CW) excitation. These UCNPs emit multiple wavelengths at UV (λ ≈ 450 nm), blue (λ ≈ 450 nm), and NIR (λ ≈ 800 nm), whose intensities are nonlinearly governed by excitation power. Exploiting these properties, multi‐colored nonlinear emissions enable functional imaging of cerebral blood vessels in deep brain. Using a simple optical setup, high resolution in vivo 3D imaging of mouse cerebrovascular networks at depths up to 800 µmm is achieved, surpassing performance of conventional imaging methods using CW lasers. In vivo cerebrovascular flow dynamics is also visualized with wide‐field video‐rate imaging under low‐powered CW excitation. Furthermore, UCNPs enable depth‐selective, 3D‐localized photo‐modulation through turbid media, presenting spatiotemporally targeted light beacons. This innovative approach, leveraging UCNPs' intrinsic nonlinear optical characteristics, significantly advances multimodal nonlinear microscopy with CW lasers, opening new opportunities in bio‐imaging, remote optogenetics, and photodynamic therapy. 
    more » « less